Department of Computer Science and Engineering

B.Tech. Mechanical Engineering

Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of
				()	Learning
					(Approx.)
	First Semester (1 st year of UG)	1			
1	Elements of Thermal and Fluid Systems	ME101	3-0-2	4	85
2	Engineering Mechanics	ME103	3-1-0	4	70
3	Energy and Environmental Engineering	EG110	3-0-2	4	85
4	Fundamentals of Computer and	CS110	3-0-2	4	85
	Programming				
5	Engineering Mathematics	MA117	3-1-0	4	70
6	Workshop Practice	ME105	0-0-4	2	70
			Total	22	465
7	Vocational Training / Professional Experience	MEv01	0-0-10	5	200 (20 x 10)
	(Optional) (Mandatory for Exit)	MEP01			
	Second Semester (1 st year of UG)				
1	Engineering Thermodynamics	ME102	3-1-0	4	70
2	Engineering Drawing	ME110	2-0-4	4	100
3	Elements of Materials and Manufacturing	ME106	3-0-2	4	85
4	Applied Electrical and Electronics	EE106	3-0-2	4	85
	Engineering				
5	English and Professional Communication	HS110	3-1-0	4	77
			Total	20	417
6	Vocational Training / Professional Experience	MEv02	0-0-10	5	200 (20 x 10)
	(Optional) (Mandatory for Exit)	MEP02			
	Third Semester (2 nd year of UG)				I
1	Measurement and Instrumentation	ME201	3-1-0	4	85
2	Theory of Machines	ME203	3-0-2	5*	100
3	Metallurgy	ME205	3-1-0	4	85
4	Fluid Mechanics	ME207	3-1-0	5*	100
5	Elective-I	ME25x	3-0-2	3	55
			Total	21	425
6	Vocational / Professional Mechanical	MEv03	0-0-8	5	200 (20 x 10)
	Practice - II				
	Fourth Semester (2 nd year of UG)				Γ
1	Fluid Machines	ME202	3-0-2	4	85
2	Heat Transfer	ME204	3-0-2	4	85
3	Industrial Engineering	ME206	3-1-0	4	70
4	Dynamics of Machines	ME208	3-1-2	5*	100
5	Elective – II	ME25x	3-0-0	3	55
			Total	20	395
6	Vocational / Professional Software Practice –	MEv04	0-0-8	5	$200(20 \times 10)$

r		T			
	Ш				
	Fifth Semester (3 rd year of UG)				
1	Thermal Power Plant	ME301	3-1-0	4	70
2	Tribology and Mechanical Vibration	ME303	3-0-2	4	85
3	Machining Processes	ME305	3-0-2	4	85
4	Fundamentals of Machine Design	ME307	3-1-2	5*	100
5	Elective – III	ME35x	3-0-0	3	55
			Total	20	395
6	Vocational / Professional Mechanical Practice - III	MEv05	0-0-8	5	200 (20 x 10)
	Sixth Semester (3 rd year of UG)				
1	Production Technology	ME302	3-0-2	4	85
2	Design of Machine Components	ME304	3-1-2	5*	100
3	Applied Thermal engineering	ME306	3-1-2	5*	100
4	Elective – IV	ME35x	3-0-0	3	55
5	Elective – V	ME35x	3-0-0	3	55
			Total	20	395
6	Mini Project	MEv06	0-0-8	5	200 (20 x 10)
	Seventh Semester (4 th year of UG)				
1	CAD-CAM	ME401	3-1-2	5*	100
2	Industrial Management Techniques	ME403	3-1-0	4	70
3	Elective – VI	ME45x	3-0-0	3	55
4	Elective – VII	ME45x	3-0-0	3	55
5	Elective – VIII	ME45x	3-0-0	3	55
			Total	18	335
6	Project	ME405	0-0-4	2	70
	Eighth Semester (4 th year of UG)				
1	Professional Experience	MEp05	0-0-40	20	800 (20 x 40)
			Total	20	800

Sr. No.	Optional Core	Code	Scheme L-T-P

Sr.	Elective	Code	Scheme
No.			L-T-P
	Elective - I [Semester - III]		
1	Numerical Methods for Mechanical Engineers	ME251	
2	Energy and Exergy Analysis of Thermal system	ME252	
3	Maintenance and Safety Engineering	ME253	
4	Theory of Elasticity and Plasticity	ME254	

5	Engineering Estimating & Costing	ME255
6	Plastics & Ceramics	ME256
7	Advance Engineering Materials	ME257
	Elective - II [Semester - IV]	
1.	Experimental Fluid Mechanics	ME358
2.	Numerical Methods for Engineers	ME359
3.	Experimental Stress analysis	ME360
4.	Condition Monitoring	ME361
5.	Additive Manufacturing	ME362
6.	Corrosion Engineering	ME363
7.	Risk, Reliability & Life Testing	ME364
	Elective - III [Semester - V]	
1.	Computational Fluid Dynamics	ME351
2.	Elements of Micro hydro plant and Pumping Systems	ME352
3.	Renewable Energy	ME353
4.	Gas Dynamics	ME354
5.	Smart Materials and Structures	ME355
6.	Control Engineering	ME356
7.	Total Quality Management	ME357
8.	Design for Additive Manufacturing	ME358
9.	Powder Processing Techniques	ME359
	Elective - IV [Semester - VI]	
1.	Electric Vehicles	ME360
2.	Fundamentals of Combustion	ME361
3.	Elements of Gas turbine	ME362
4.	Finite Element Method	ME363
5.	Product Design and Development	ME364
6.	Unconventional Machining Processes	ME365
7.	Logistics & Supply Chain	ME366
8.	Tooling for Manufacturing	ME367
	Elective - V [Semester - VI]	· · ·
1.	Automobile Engineering	ME368
2.	Energy and Buildings	ME369
3.	Jet Propulsion	ME370
4.	Robotics	ME371
5.	Mechanics of Composite Materials	ME372
6.	Welding Technology	ME373
7.	Production Planning & Control	ME374
8.	Plant Layout & Material Handling	ME375
	Elective - VI [Semester - VII]	
1.	Design of Heat Exchanger	ME451
2.	Energy Efficiency in Industrial Utilities	ME452
3.	Rocket Propulsion	ME453
4.	Fatigue, Fracture and Failure analysis	ME454
5.	Computer Aided Machine Design	ME455
6.	Metal Forming Technology	ME456

7.	Production and Operations Management	ME457
8.	Mechatronics & Industrial Automation	ME458
	Elective - VII [Semester - VII]	
1.	Radiative Heat Transfer	ME459
2.	Advanced Refrigeration and Air Conditioning Systems	ME460
3.	Design of Material Handling Equipment	ME461
4.	Lubrication Engineering	ME462
5.	Foundry Technology	ME463
6.	Processing of Composites	ME464
7.	Computer Integrated Manufacturing	ME465
	Elective - VIII [Semester - VIII]	
1.	Two Phase Flow	ME466
2.	Theory and Analysis of Cryogenics System	ME467
3.	Design of Pressure Vessels	ME468
4.	Rotodynamics	ME469
5.	Industry 5.0	ME470
6.	Micro & Nano Manufacturing	ME471
7.	Surface Engineering & Heat Treatment	ME472

B.Tech. I (DoME) Semester – I Elements of Thermal and Fluid Systems	Scheme	L	т	Ρ	Cre dit
ME101		3	0	2	04

1. <u>(</u>	Course Outcomes (COs):
At the	e end of the course, students will be able to
CO1	Explain the basic concepts of thermodynamics, thermodynamic processes and apply the first law of thermodynamics to non-flow and flow processes
CO2	Explain the properties of fluids and fluid flows and determine the hydrostatic forces on surfaces, buoyancy and floatation
CO3	Describe the types and properties of fuels and lubricants and calculate the calorific values based on analysis
CO4	Classify and compare the working of boilers and their performances parameters
CO5	Calculate the efficiencies of air standard cycles and differentiate between the types and working of internal combustion engines
CO6	Identify the refrigerants and their applications and illustrate the operation of refrigeration and air conditioning systems

2.	Syllabus	
	INTRODUCTION TO THERMODYNAMICS	(12 Hours)
	Classical thermodynamics & statistical thermodynamics, Thermodynamic syste states, processes, cycle, equilibrium, Zeroth law of thermodynamics, Definiti heat and their evaluation for various thermodynamics processes, Equation of gas, change in internal energy, change in enthalpy of gas in various the processes. First law of thermodynamics for flow and non-flow processes, Appl law of thermodynamics to boilers, engines, turbines, and compressors	m, properties, on of work & state for ideal ermodynamics ication of first
	INTRODUCTION TO FLUID MECHANICS	(07 Hours)
	Classification of fluids, Properties of fluids, Types of fluid flow, Static force buoyancy and metacenter, Numerical, Layout of Hydropower Plant.	s on surfaces,

FUELS AND LUBRICANTS	(04Hours)
Classification of fuels, Calorific values of fuels, Dulong's formula, Proximate analysis of fuel, Types of lubricants, Properties of lubricants, flash point, fire p vapor pressure, cloud point, pour point, etc.	and ultimate oint, viscosity,
STEAM GENERATORS	(09 Hours)
Steam generators, Definition, Classification, General study of Cochran, Ba Lancashire and Benson boilers, boilers mountings and accessories, Type Calculation of chimney height, boiler efficiency and Numericals, Layout of t plant, study of heat recovery system including economizes, superheaters and ai	bcock Wilcox, s of draught, hermal power r preheaters.
INTERNAL COMBUSTION ENGINES	(07 Hours)
Air standard cycles: Otto cycle, Diesel cycle, and Dual cycle with Numericals, C internal combustion engines, Spark ignition and compression ignition engines, t four-stroke engines, various efficiencies.	lassification of wo-stroke and
REFRIGERATION AND AIR-CONDITIONING	(06 Hours)
Unit of refrigeration, Coefficient of performance, Refrigerants, Vapour refrigeration system, Domestic refrigerator, Psychrometric terms, Window conditioners, Central air conditioning systems, Ice plant.	Compression and split air
(Total Contact Tim	ne: = 45 Hours)

3.	Tutorials (Not Applicable)

4.	Practical
1	Determination of calorific value of solid fuels by Bomb Calorimeter
2	Determination of flash point and fire point of a given sample of oil.
3	Determination of viscosity of oil by viscometer (Redwood or Saybolt).
4	Study of working of 2-stroke and 4-stroke SI and CI engines
5	Study of different types of steam generators
6	Study of mountings and accessories of steam generators
7	Study of working of refrigerator and air conditioner

8	Study and determination of COP of ice plant
9	Determination of different types of flow patterns by Reynolds's experiment.
10	Determination of metacentric height of floating body.

5.	Books Recommended
1	P. K. Nag. Engineering Thermodynamics, 6th Edition, McGraw Hill, 2017.
2	R. K. Rajput. Thermal Engineering, 10th Edition, LaxmiPubications, 2018.
3	G. Rogers and Y. Mayhew. Engineering Thermodynamics: Work and Heat Transfer, 4th Edition,
	Pearson Education India, 2002.
4	S. K. Som, G. Biswas and S. Chakraborty. Introduction to Fluid Mechanics and Fluid Machines,
	3rd Edition, McGraw Hill, 2017.
5	D. S. Kumar. Fluid Mechanics and Fluid Power Engineering, S. K. Kataria and Sons, 2013.

B.Tech. I (DoME) Semester – I Engineering Mechanics	Scheme	L	т	Ρ	Credit
ME103		3	1	0	04

1. <u>Course Outcomes (COs):</u>

At the end of the course, students will be able to

CO1	Correlate real-life problems with engineering mechanics and determine the resultant &
	moment of various force system acting in 2-Dimension & 3- Dimension.
CO2	Evaluate centroid and Moment of inertia of different sections.
CO3	Analyse the internal and external forces in truss
CO4	Analyse the concepts of stress and strain in structures and understand the material
	properties.
CO5	Apply the knowledge of mechanical/elastic/thermal properties of materials and
	constitutive relationships to solve elementary level determinate and indeterminate
	problems.
CO6	Analyze the response of structural elements subjected to axial force, bending and shear or
	in combination and graphically represent the distribution.

2.	Syllabus	
	EQUILIBRIUM OF RIGID BODY	(04 Hours)
	Principle of superposition and Transmissibility of forces, Resultant forces, equilibrium, types of equilibrium, Parallelogram law of forces, Triangular I Resolution of forces, orthogonal and non-orthogonal components of forces more than two concurrent forces, Polygon law of forces, Graphical metho diagram, Lamis theorem, Coplanar Non-Concurrent Force Systems, Varignon moments, Condition for equilibrium.	condition for aw of forces, , Resultant of od, Free body 's principle of
	CENTRE OF GRAVITY AND MOMENT OF INERTIA	(05 Hours)
	Centre of gravity – Centre of area, volume, mass, weight, Centre of gravity of Theorem of Pappus, Second moment of areas. Definition of a momen Determination of the moment of the area by integration, Parallel and perp theorem for Moment of Inertia. MI of composite area. Concept of Mass mome body.	of composites, nt of inertia. rendicular axis nt of inertia of
	TRUSS	(05Hours)
	Trusses: definition, stability, and determinacy, types, Determination of reactio and internal resistance for planar trusses, zero force members, Analysis of pla method of joint. Concept of zero force member. Analysis of plane trusses section,	ns at supports ane trusses by by method of

FRICTION	(04 Hours)
Friction: Limiting friction, types of friction, friction angle, coefficient of friction, angle repose, Cone of friction, Variation of friction with applied load – Static friction, dynar friction, Ladder friction, Wedge friction, Screw friction	
SIMPLE STRESSES AND STRAINS	(15 Hours)
Stress, Strain and Elasticity, Deformation and Stresses in Statically determin Principle of superposition, Deformation in statically indeterminate structures and stresses in composite structures, stress strain diagram for mild steel, Ther strain, Thermal stresses in composite bars, Elastic constants: Linier strain, I Volumetric strain of a rectangular body subjected to three mutually perpen Bulk modulus, Relation between, young's modulus, bulk modulus and Modu Mechanical Properties and test of metals, Principal planes and principal stress and graphical method for finding principal stresses	ned structure, , Deformation mal stress and Poison's ratio, dicular forces, lus of rigidity. ses, Analytical
SHEAR FORCE AND BENDING MOMENT	(07 Hours)
Classification of beams, loads, and supports; Support reaction, Relation betwee and bending moment, point of contra flexure, shear force and bending momen simply supported beam and cantilever beam, Torsion of circular shaftsDeflection	en shear force It diagrams for In of beams
BENDING AND SHEAR STRESSES IN BEAMS	(04 Hours)
Pure bending stress, Theory of pure bending, Equation of bending stress, Maximoment, Flitch beam, Shear stress distribution for a beam section, Distribution stresses in standard section.	imum bending ution of shear
(Total Contact Tim	ie: = 45 Hours)

3	Tutorials
1	Numerical related to the topics covered in the theory classes

4	Practical
	Not applicable

5.	Books Recommended
1	Beer, F.P. and Johnston, E.R., Vector mechanics for engineers: Statics and Dynamics, Tata
	McGraw-Hill, New Delhi.

2	Desai, J.A. and Mistry, B.B., Engineering Mechanics: Statics and Dynamics, Popular,
	Prakashan, Surat.
3	Meriam, J.L. and Kraige, L.G. "Engineering Mechanics: Statics and Dynamics", John Wiley and
	sons, New York
4	Hibbeler, R.C. "Engineering Mechanics: Statics and Dynamics", Prentice Hall of India, New
	Delhi
5	F. P. Beer and Johnston S J , John DeWolf , David Mazurek, "Mechanics of Materials", Tata
	McGraw Hill, New Delhi, 2020.
6	S Timoshenko and D H Young, "Elements of Strength of Materials", Tata McGraw Hill, New
	Delhi, 2006
7	S SBhavikatti, "Strength of Materials", Vikas Publication House, New Delhi, 2007

B.Tech. I (ME) Semester – I ENERGY AND ENVIRONMENTAL ENGINEERING	Scheme	L	т	Ρ	Credit
EG110		З	0	2	04

1 At th	1. <u>Course Outcomes (COs):</u>				
	e end of the course, students will be usie to				
CO1	Explain the components of ecosystems, various biogeochemical cycles and importance of different urban network services				
CO2	Differentiate between various types of environmental pollution along with their impacts and regulatory standards				
CO3	Examine various global environmental issues and their management				
CO4	Discuss the fundamental principles of energy, including classification, conservation and related policy frameworks and regulations.				
CO5	Analyse a given energy systems and their components				

2.	Syllabus			
	ENVIRONMENT AND ECOSYSTEMS	(10 Hours)		
	Introduction: Concept of an ecosystem - structure and functions of ecos ofecosystem - producers, consumers, decomposers; Food chains, food pyramids,energyflowin ecosystem;Bio-geochemicalcycles,hydrologic cycle	system;Components I webs, ecological		
	Componentsofenvironmentandtheirrelationship, impactoftechnologyonenvironmende degradation, environmental planning of urban network services such as watersupp solid waste management; closed loop cycle, concepts of sustainability			
	ENVIRONMENTAL POLLUTION	(10 Hours)		
	Water, air, soil, noise, thermal and radioactive, marine pollution - sources, effects and engineeringcontrolstrategies; Centralized and decentralized treatment system, Drinkingwaterqualityandstandards, ambient airandnoisestandards			
	GLOBAL ENVIRONMENTAL ISSUES AND ITS MANAGEMENT	(10 Hours)		
	Engineering aspects of climate change, concept of carboncredit, CO ₂ sequestration, concepts of environmental impact assessment and environmental audit, lifecycle assessment			
	BASICS OF ENERGY AND ITS CONSERVATION	(07 Hours)		

Classification of energy sources, Global and national energy scenario, Fossil and alternate fuels and its characterization. General aspects of energy conservation and management; Energy conservation act, Energy policy of company; Need for energy standards and labelling; Energy building codes.		
INTRODUCTION TO ENERGY CONVERSION SYSTEMS	(08 Hours)	
Energy conversion systems: Working principle, Basic components, General functioning and normal rating specifications of various energy conversion systems like Power plant, Pump, Refrigerator, Air-conditioner, Internal combustion engine, Solar PV cell, Solar water heating system, Biogas plant. Wind turbine, Fuel cells.		
(Total Contact Time: 45 Hours + 30) Hours = 75 Hours)	

3.	Tutorials (Not Applicable)

4.	Practical
1	Performance Test on a computerised single cylinder diesel engine
2	Performance Test on Three-cylinder petrol engine
3	Determination of COP of vapor compression refrigeration system
4	Study of General Motors Cruze Vehicle Automotive System
5	Study of MG Hector Vehicle Automotive Systems
6	Measurement of direct and diffused Solar radiation using pyranometer
7	Determination of I-V Characteristics of solar PV Panel
8	Study of electricity and or gas bill
9	Study of pollutants from diesel Engine
10	Study of pollutants from petrol Engine

5.	Books Recommended
1	Daniel BBotkin&EdwardA Keller, Environmental Sciences, JohnWiley&Sons, 2010
2	R.Rajagopalan, Environmental Studies, Oxford University Press, 2015
3	BennyJoseph, EnvironmentalStudies,McGraw Hill publishers, 2017
4	B. H. Khan, Nonconventional Energy resources, Second Edition, Tata McGraw Hill publishers,
	2009
5	P. V. Bhale, National Mission Project on pedagogy main phase course on Energy Management
	and Energy Audit, 2018
6	C S Rao, Environmental Pollution Control Engineering, New Age International Publishers, 2018

B.Tech. I (DoME) Semester – I FUNDAMENTALS OF COMPUTER AND PROGRAMMING	Scheme	L	т	Ρ	Credit
CS110		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	acquire knowledge about computer architecture, network and software development.
CO2	install an operating system and configure the network along with programming skills to solve the given problem.
CO3	debug network and operating system related issues and analyse the given problem.
CO4	evaluate programming solutions with different aspects.
CO5	design and develop solution for given problems.

2.	Syllabus				
	INTRODUCTION TO COMPUTER AND ITS ARCHITECTURE	(02 Hours)			
	Introduction and Characteristics, Computer Architecture, Generations, C Applications, Central Processing Unit and Memory, Communication between Processor Speed, Multiprocessor System, Peripheral Buses, Motherboard Demonst				
	MEMORY AND VARIOUS INPUT AND OUTPUT DEVICES	(02 Hours)			
	Introduction to Memory, Input and Output Devices, Memory Hierarchy, Primary Men Types, Secondary Memory, Classification of Secondary Memory, Various Seconda Devices and their Functioning.				
	NUMBER SYSTEMS	(01 Hour)			
	Introduction and type of Number System, Conversion between Number System, Arith Operations in different Number System, Signed and Unsigned Number System.				
	INTRODUCTION TO SYSTEM SOFTWARES AND PROGRAMMING LANGUAGES	(04 Hours)			
	Classification of Computer Languages, Introduction of Operating System, Evolution, Type Function of OS, Unix Commands, Evolution and Classification of programming Language, F and Selection of good Programming Language, Development of Program, Algorithe Flowchart, Program Testing and Debugging, Program Documentation and Para Characteristics of good Program.				
	WINDOWS OPERATING SYSTEM AND ITS ENVIRONMENT	(02 Hours)			
	Introduction to GUI based OS, Configuration, Setup, Services, Network Configuration.				
ـــــــــــــــــــــــــــــــــــــ	I icat Cada, ##nYY, ## Danartmant Identity, n. Vaar, YY, Subject Seguence number YY	(, last digit 0			

LINUX OPERATING SYSTEM AND ITS ENVIRONMENT	(02 Hours)			
Introduction to Unix based OS, Configuration, Setup, Services, Scripting, Network Configuration.				
DEBUGGING TOOLS AND COMPILER OPTION	(04 Hours)			
Different Debugging tools, Commands, Memory dump, Register and Varia Instruction and Function level debugging, Compiler Options, Profile Generation.	ble Tracking,			
DATA COMMUNICATION, COMPUTER NETWORK AND INTERNET BASICS	(02 Hours)			
Data Communication and Transmission media, Multiplexing and Switching, Computer Network and Network Topology, Communication Protocols and Network Devices, Evolution and Basic Internet Term, Getting Connected to Internet and Internet Application, Email and its working Searching the Web, Languages of Internet, Internet and Viruses.				
PROGRAMMING USING 'C' LANGUAGE – INTRODUCTION	(06 Hours)			
Characteristics of C Language, Identifiers and Keywords, Data Types Constants and Variables, Declarations and Statements, Representation of Expressions, Classification of Operators and Library Functions for Data Input and Output Statements, Formatted Input and Output Statements.				
PROGRAMMING USING 'C' LANGUAGE – CONTROL STATEMENTS, STRUCTURES, ARRAYS, POINTERS	(12 Hours)			
Conditional Control Statements, Loop Control Statements, One Dimensional Array of Numbers and Characters, Two-Dimensional Array, Introduction and Development of User Defined Functions, Different Types of Variables and Parameters, Structure and Union, Introduction to Pointers, Pointer Arithmetic, Array of Pointers, Pointers and Functions, Pointers and structures, File Handling Operations.				
PROGRAMMING USING 'C' LANGUAGE – FUNCTIONS	(06 Hours)			
Functions, Passing the arguments, Return values from functions, Recursion, Header Files Design, File handling operations, Read and Write to Secondary Devices, Read and Write to Input and Output Ports.				
PROGRAMMING USING 'C' LANGUAGE – GRAPHICS, DEBUGGING	(02 Hours)			
Include Graphics Library, Debugging, Linking, Compilation Option for Optimization, I	Make file.			
Practicals will be based on the coverage of the above topics separately.	(30 Hours)			
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				

3.	Practicals:
1	Basic commands of Windows and Linux
2	Flow chart drawing and writing pseudo steps or algorithms steps
3	Programming for logic development using different control statements
4	Programming for familiarity with control statement, array, pointers
5	Programming using structures, pointers, programming using functions

4.	Books Recommended:
1.	"Introduction to Computer Science", Fourth Impression, Pearson Education, ITL Education Solutions Limited, 2009.
2.	Gottfried B.S., "Programming with C Schaum's outline Series", Outline Series, 2 nd Edition, Tata McGraw-Hill, 2006.
3.	Brian W. Kernighan, Dennis M. Ritchie, "The C Programming language", 2 nd Edition, Prentice Hall PTR publication, 1988.
4.	E. Balagurusamy, "Programming in ANSI C", 6 th Edition, Tata Mc-Graw Hill, 2012.
5.	Pradip Dey, "Programming in C", 2 nd Edition, Oxford University Press, 2012.

B.Tech. I (DoME) Semester – I ENGINEERING MATHEMATICS	Scheme	L	т	Ρ	Credit
MA117		З	1	0	04

1	. <u>Course Outcomes (COs):</u>		
At the	At the end of the course, students will be able to		
CO1	Solve a system of linear algebraic equations		
CO2	Expand the periodic functions in the form of Fourier series		
CO3	Obtain higher order differential equations		
CO4	Explain the use of complex variable for conformal transformation		
CO5	Demonstrate probability and statistical analysis to Engineering applications		
CO6	Apply numerical methods to solve partial differential equations		

2.	SYLLABUS	
	LINEAR ALGEBRA	(06 Hours)
	Matrix algebra, systems of linear equations, eigen values and eigen vectors	
	CALCULUS	(08 Hours)
	Functions of single variable, limit, continuity and differentiability, theorems, indeterminate forms; evaluation of definite and improper integrals; dou integrals; partial derivatives, total derivative, Taylor series (in one and two variables minima, Fourierseries; gradient, divergence and curl, vector identities, directional d surface and volume integrals, applications of Gauss, Stokes and Green's theorems	mean value uble and triple s), maxima and erivatives, line,
	DIFFERENTIAL EQUATIONS	(08Hours)
	First order equations (linear and nonlinear); higher order linear differentialequation: coefficients; Euler-Cauchy equation; initial and boundary value problems;Lapla solutions of heat, wave and Laplace's equations.	s with constant ce transforms;
	COMPLEX VARIABLES	(10 Hours)
	Analytic functions; Cauchy-Riemann equations; Cauchy's integral theorem and in Taylor and Laurent series	tegral formula;

PROBABILITY AND STATISTICS	(05 Hours)
Definitions of probability, sampling theorems, conditional probability; mean, med standard deviation; random variables, binomial, Poisson and normaldistributions	ian, mode and
NUMERICAL METHODS	(08 Hours)
Numerical solutions of linear and non-linear algebraic equations; integration byt Simpson's rules; single and multi-step methods for differential equations	rapezoidal and
(Total Contact Tim	ne: = 45 Hours)

3.	Tutorials
	Numerical based on the respective units

3.	Books Recommended
1	Kreyszing E., "Advanced Engineering Mathematics", John Wiley & Sons, Singapore, Int. Student Ed. 2015.
2	James Steward De, "Calculus", Thomson Asia, Singapore, 2003
3	O'Neel Peter., "Advanced Engg. Mathematics", Thompson, Singapore, Ind. Ed. 2002.
4	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993
5	Michael D. Greenber, "Advance Engineering Mathematics", Pearson (Singapore) Indian Edition, 2007

B.Tech. I (DoME) Semester – I WORKSHOP PRACTICE	Scheme	L	т	Ρ	Credit
ME105		0	0	4	02

1	. <u>Course Outcomes (COs):</u>		
At the	At the end of the course, students will be able to		
CO1	Observe safety precaution in workshop		
CO2	Identify and operate various carpentry, smithy and fitting tools		
CO3	Perform the wood working assignment		
CO4	Create the assigned smithy component		
CO5	Prepare fitting and assembly job		

2.	Syllabus		
	UNIT 1	(15 Hours)	
	Introduction of the tools used in carpentry shop and skill development in carper	ntry works.	
	UNIT 2	(15 Hours)	
	Introduction of the tools used in Fitting shop and skill development in fitting wo	rks	
	UNIT 3	(15 Hours)	
	Introduction of the tools used in smithy shop, and skill development in smithy w	vorks	
	UNIT 4	(15 Hours)	
	Introduction of the tools used in pipe fittings, plumbing and skill development in assembly		
	(Total Contact Time: = 60 Hours)		

3.	Books Recommended
1	H.S. Bava, "WorkshopTechnology", TataMcGraw HillPublishingCo. Ltd., 1995.
2	S.K. Hajra Chaudhary, "Elements of Workshop Technology Vol. I", Asia Publishing House, 1988
3	W.A.J. Chapman, "Workshop Technology", ELBS LowPrice Text, Edward Donald Pub. Ltd., 1961
4	Gupta K.N. &Kaushish J.P., "Workshop Technology Vol. I, II", New Delhi Heights Pub., New Delhi,1991
5	Raghuvanshi B. S., "Course inWorkshopTechnology", Dhanpat Rai&Sons, New Delhi, 1991
6	Tejwani V. K. "BasicMachine Shop Practice Vol. I, II", Tata McGraw Hill Pub. Co., New Delhi, 1989.
7	Arora B. D. "Workshop Technology Vol. I, II", Satya Prakashan, New Delhi, 1981

B.Tech. I (DoME) Semester – II ENGINEERING	Scheme	L	т	Р	Credit
THERMODYNAMICS ME102		3	1	0	04

1	1. <u>Course Outcomes (COs):</u>			
At the	At the end of the course, students will be able to			
CO1	Relate the thermodynamic laws to engineering systems and processes			
CO2	Describe the second law of thermodynamics in analysing performance of engineering systems			
CO3	Apply the entropy concept to various thermal systems			
CO4	Evaluate the various thermal systems based on exergy concepts and thermodynamic relations			
CO5	Solve thermodynamic problems of pure substance and ideal gas and gas mixture			

2.	Syllabus		
	INTRODUCTION	(02 Hours)	
	Thermodynamic system and processes, Zeroth and First law of thermodynamics, Calculati of work and heat in various processes		
	PROPERTIES OF PURE SUBSTANCE	(06 Hours)	
	Definition of pure substance, Phases of a pure substance, P-V-T behavior of a pure substance, Critical & triple point of a pure substance, Mollier diagram, steam table & dryness fraction of steam, Measurement of dryness fraction of steam		
	PROPERTIES OF GAS AND GAS MIXTURE	(05Hours)	
	Equation of state for ideal gas, Change in entropy, internal energy, enthalpy of gas in various thermodynamics processes, Dalton's law of partial pressure & properties of gas mixture, Compressibility factor		
	SECOND LAW OF THERMODYNAMICS	(07 Hours)	
	Statements of second law of thermodynamics The Carnot cycle & Carnot's theorer Corollary of Carnot's theorem, Efficiency of reversible engine, Causes of irreversibility, C.O. of heat pump & refrigerator		

ENTROPY	(08 Hours)
Inequality of Clausius theorem, Entropy as a property, Change in entropy in irreversible processes, Principle of increase of entropy, Entropy change of a various thermodynamics processes, Second law of thermodynamics for steady fits application	reversible and n ideal gas in low process &
AVAILABILITY AND IRREVERSIBILITY	(09 Hours)
Basic concepts, Available and unavailable energy for a cycle, Different form of balance for closed system and open system, Decrease of Exergy principle, Differ first law & second law efficiency, Second law efficiency for steady flow devices	Exergy, Exergy ence between
THERMODYNAMIC RELATIONS & EQUILIBRIUM	(08 Hours)
The Maxwell relations, Clausis–Clapeyron equation, Joule –Thomson coefficient involving specific heats, enthalpy, entropy.	, Relationships
(Total Contact Tim	e: = 45 Hours)

2.	Tutorials
	Numerical based on the topics covered in theory class

3.	Books Recommended
1	W. Van, R.E. Sonnetag and C. Borgnakke, Fundamental of Classical Thermodynamics, John
	Wiley & sons, 2005.
2	P K Nag, Engineering Thermodynamics, McGraw Hill Education Private Limited, 2013
3	Y.A. Cengel and M.A. Boles, Thermodynamics, Tata McGraw Hill, 2004
4	C.P. Kothandaraman, P.R. Khajuria and S. Domkundrar, A Course in Thermal Engineering,
	Dhanpat Rai & Sons,2004.
5	P.L. Ballaney, Thermal Engineering, Khanna Publishers, 2000

B.Tech. I (DoME) Semester – II Engineering Drawing	Scheme	L	Т	Ρ	Credit
ME 110		2	0	4	04

1	1. <u>Course Outcomes (COs):</u>		
At the	e end of the course, students will be able to		
CO1	To read, understand and apply the knowledge of orthographic projections (production- related features and instructions) in the manufacturing industry, process industry and other allied engineering applications.		
CO2	To communicate with globally recognized engineers of different disciplines of engineering for research and development activities.		
CO3	To get knowledge of projections and sections of different solid objects		
CO4	To perceive the idea of sectional view and its advantages of it.		
CO5	To apply the concept of intersections of solids for various engineering applications		
CO6	To create the image of three-dimensional figures with the help of isometric projections		

2.	Syllabus	
	INTRODUCTION	(01 Hours)
	Introduction: Importance of Engineering Drawing, drawing instruments and mat and IS Conventions, First angle and third angle projection method.	erials, B.I.S.
	ENGINEERING CURVES	(03 Hours)
	Classification of engineering curves, construction of conics, cycloidal, Involutes a curves.	and spirals
	PROJECTION OF POINTS, LINES AND PLANES	(04Hours)
	Introduction to principal planes of projection, Projections of the points located and different quadrants, projection of lines with its inclination to the reference length of the lines and its inclination with reference planes, projection of pla inclination with two reference planes, concept of an auxiliary plane method for of planes.	in the same planes, true anes with its or projection

 -	
PROJECTION AND SECTION OF SOLIDS	(03 Hours)
Classification of the solids, projections of the solids like cylinder, cone, pyrar with its inclination to two reference planes, Section of such solids and true section	nid and prism shape of the
DEVELOPMENT OF THE LATERAL SURFACES	(03 Hours)
Method of development, parallel line development, radial line development, de cylinder, cone, prism, pyramid, true length of edges – oblique surface.	velopments of
PENETRATION CURVE	(04 Hours)
Classification, line of interaction, line/generator method and section p intersection of two prisms, two cylinders, interaction of cone and cylinder, prism, surface development.	lane method; pyramid with
ORTHOGRAPHIC PROJECTIONS	(04 Hours)
Projections from a pictorial view of the object on the principal planes for view fr and side using a first and third angle of the projection method	rom front, top,
ISOMETRIC PROJECTIONS	(04 Hours)
Terminology, isometric scale, construction of isometric view an projection, isometric axes, and lines	nd isometric
INTRODUCTION TO COMPUTER-AIDED DRAFTING	(04 Hours)
Introduction of the drafting and modeling software and demonstration of its ap onthe latest machines.	plication
(Total Contact Ti	me: 30 Hours)

4.	Practical:Practice with drawing sheets
1	Orthographic views
2	Isometric views
3	Engineering curves
4	Projection of points and planes
5	Projection of solids
6	Section of solids
7	Penetration curve and surface development

8	Demonstration of computer-aided drafting and demonstration of its application in the latest
	machines.
9	Determination of cloud point and pour point of biodiesel and its comparison with diesel

5.	Books Recommended
1	Bhatt, N.D.,2023. Engineering Drawing. Charotar Publishing House Pvt. Limited
2	Shah P. J., 2013, Engineering Graphics, S. Chand and Company.
3	Basant Agrawal, C M Agrawal, 2019, Engineering Drawing, McGraw Hill Education (India)
	Private Limited
4	S.R. Singhal, O. P. Saxena, 2014, Engineering Drawing, Asian Publisher
5	R. K. Dhawan, 2019, A Textbook of Engineering Drawing, S Chand Publishing

B.Tech. I (DoME) Semester – II ELEMENTS OF MATERIALS AND	Scheme	L	Т	Ρ	Credit
MANUFACTURING ME106		3	0	2	04

1 At the	1. <u>Course Outcomes (COs):</u> At the end of the course, students will be able to		
CO1	Classify and compare various engineering materials and identify their properties and applications		
CO2	Describe different types of crystal systems and determine the crystal structures		
CO3	Differentiate between different casting processes and identify a suitable casting process for a given application		
CO4	Differentiate between different forming processes and identify a suitable forming process for a given application		
CO5	Differentiate between different welding and allied processes and identify a suitable process for a given application		

2.	Syllabus		
	ENGINEERING MATERIALS	(14 Hours)	
	Introduction: Classification of engineering materials, Metals (ferrous and non-ferrous alloys, Ceramics, Polymers (thermosets and thermoplastics), Composites (metal-n ceramic-matrix, polymer- matrix), Semi-conductors, Bio-materials, Nano-materials Advance materials, Engineering properties of materials, Stress- Strain relationship, Eff temperature on properties of materials. Crystalline structure, Nano-crystalline structure, Types of crystal systems, Crystal la Lattice parameters, Metallic structures, Miller indices, Atomic radius & atomic packing fe for various crystal systems, Crystalline materials, Amorphous materials, Structure determin byX-ray diffraction, Bragg's law.		
	METAL CASTING PROCESSES	(10 Hours)	
	Overview of casting processes, Applications – materials and products, Sand casting process types of patterns, pattern allowances, core and mould making, molding materials, types cores, elements of riser and gating system, melting and pouring, cleaning of castings, castin defects, Special casting techniques such as – permanent mould casting, shell mould castin die casting, investment casting, continuous casting and centrifugal casting.		

METAL FORMING PROCESSES	(09Hours)	
Overview of metal forming processes, Applications - materials and products, Nature of plastic deformation, Temperature in metal forming, forming processes - Rolling, Forging, Extrusion, Drawing (wire, bar and tube), and Sheet metal forming (Shearing, Deep drawing, Bending) with load estimation.		
WELDING AND ALLIED PROCESSES	(12 Hours)	
Overview of welding processes, Weld joints, Gas welding (Principles of gas welding, type gases used, types of flames, welding techniques, equipment used, filler rods), Gas cutt Electric arc welding processes - manual metal arc welding, flux cored arc welding, tungsten arc welding (GTAW), gas metal arc welding (GMAW), submerged arc welding, Elec resistance welding processes – spot welding, seam welding, projection welding, u welding, flash welding, Solid state welding processes – friction welding, friction stir welc ultrasonic welding, Weld defects, Allied processes like brazing, soldering and adhe bonding.		
(Total Contact Time: 45Hours)		

3.	Practical
1	Testing of clay content of moulding sand.
2	Determination of grain fineness number of moulding sand.
3	Determination of moisture content of moulding sand.
4	Demonstration of permanent mould casting process
5	Demonstration and practice on manual metal arc welding
6	Demonstration of the effects of the welding parameters on GTAW process
7	Demonstration and practice on oxy-acetylene gas welding
8	Demonstration of the effects of the welding parameters on oxy-acetylene gas welding
9	Demonstration and practice on gas cutting
10	Practice on soldering of galvanized steel
11	Demonstration of selected forming operations

5.	Books Recommended
1	M. P. Groover, Fundamentals of Modern Manufacturing, Materials, Processes, and Systems,
	4 th Edition, John Willey, 2010.
2	S. Kalpakijan and S. R. Schmid, Manufacturing Processes for Engineering Materials, 6th
	Edition, Pearson Education, 2018.

3	P. N. Rao, Manufacturing Technology – Vol. 1, 5th Edition, McGraw Hill, 2018.
4	V. Raghavan, Materials Science and Engineering: A First Course, 6th Edition, Prentice Hall
	India,2015.
5	J. T. Black and R. A. Kohser, DeGarmo's Materials and Processes in Manufacturing, Wiley India,
	2017.

B. Tech. I (DoME) Semester – II	Scheme	L	Т	Ρ	Credit
APPLIED ELECTRICAL AND ELECTRONICS ENGINEERING		2	0	2	Δ
EE106		3	U	2	-

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Apply the basic concepts like Mesh Analysis, Nodal analysis, Theorems, Phasors to electrical circuits for analysis purposes.
CO2	Explain the basics of magnetic circuits and apply them for electrical machines.
CO3	Classify Electrical wiring and instruments
CO4	Differentiate various semi-conductor devices and identifying their use in various applications.
CO5	Explain the Instrumentation systems, sensors, few appliances and electrical safety.

2.	Syllabus			
	DC and AC Circuits	(10 Hours)		
	DC circuits:Basic Terminology (voltage, current, power, resistance, EMF); Ohms Law Kirchhoff's laws, Resistances in series and parallel; Current and Voltage Division Ru delta conversion, Nodal Analysis, Mesh Analysis, Thevenin's Theorem, Norton's Th AC Circuits:Phasor representation and its applications to network elements (R, L, C RC and RLC circuits.			
	Definitions of single Phase AC (Frequency, Average value, RMS value, Harmonics, Power and Power factor) and Three-Phase AC system (star-delta connections, phase voltage, line voltage phase currents and line currents and their relations).			
	Magnetic Circuits:	(04 Hours)		
	Analogy between electrical and magnetic circuits, Amperes circuital law, Faraday's laws of electromagnetic induction, Lenz's Law, Self-Inductance, Mutual Inductance, Dot convention and Co-efficient of coupling.			
	Electrical Machines:	(08 Hours)		
	Transformers: Construction, Principle, OC and SC Test for determining its equivalent circuit, efficiency and Losses.			
Single-Phase and Three-Phase Induction Motors: Construction, Principle, Torque equati Speed-Torque characteristics, Calculation of Losses and Efficiency.				

Electrical Wiring, Instruments and Safety:	(06 Hours)			
Circuits in domestic wiring, simple control circuit in domestic installati applications.	on and some			
Working principle of PMMC, MI, EDM and Induction instruments for measurem current, power and energy.	Working principle of PMMC, MI, EDM and Induction instruments for measurement of voltage, current, power and energy.			
Basics of electrical safety, Grounding and Earthing.	Basics of electrical safety, Grounding and Earthing.			
Introduction to Semiconductor devices:	(06 Hours)			
PN Junction Diode: Principle of operation, VI characteristics, Avalanche Breakdo	wn.			
Bipolar Junction Transistors: PNP and NPN transistors, Principle of operation, Cu Input and output characteristics of Common Emitter configuration.	Bipolar Junction Transistors: PNP and NPN transistors, Principle of operation, Current gain, Input and output characteristics of Common Emitter configuration.			
Zener diode as voltage regulator and Basics of PV cells and PV panels.	Zener diode as voltage regulator and Basics of PV cells and PV panels.			
Electronic Instrumentation	(05 Hours)			
Concepts of Rectifiers (Half and full wave), Rectifier based volt meters, Blo electronic instrumentation, Sensors: Introduction to R, L, C sensors and the Sensors for smoke and gasses.	Concepts of Rectifiers (Half and full wave), Rectifier based volt meters, Block diagram of electronic instrumentation, Sensors: Introduction to R, L, C sensors and their applications, Sensors for smoke and gasses.			
MECHATRONICS AND ROBOTICS	(04 Hours)			
Microprocessors and Microcontrollers: Architecture, programming, I/O, Compu Programmable logic controller. Sensors and actuators, Piezoelectric accelerome sensor, Optical Encoder, Resolver, Inductosyn, Pneumatic and Hydraulic actu motor, Control Systems- Mathematical modeling of Physical systems, c controllabilityand observability.	Microprocessors and Microcontrollers: Architecture, programming, I/O, Computer interfacing, Programmable logic controller. Sensors and actuators, Piezoelectric accelerometer, Hall effect sensor, Optical Encoder, Resolver, Inductosyn, Pneumatic and Hydraulic actuators, stepper motor, Control Systems- Mathematical modeling of Physical systems, control signals, controllabilityand observability.			
Robotics, Robot Classification, Robot Specification, notation; Direct and Inverse Kinematics; Homogeneous Coordinates and Arm Equation of four Axis SCARA Robot.				
Few applications	(02 Hours)			
Block diagram of washing machine, microwave oven etc.				
Practical will be based on the coverage of the above topics separately	(30 Hours)			
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				

3.	Practicals
1	Study of Ammeter and voltmeters for measurement of voltage and current.
2	Verification of Kirchoff's laws.
3	Verification of Thevenin's Theorem for a given electrical network.
4	Verification of Norton's Theorem for a given electrical network.
5	Measurement of single phase Power in Series RL or RC circuit.
6	Open circuit and short circuit test for the transformers for efficiency calculation
7	To study Power measurement method for three phase Induction Motor using two-watt meter method
8	Study of Electrical Wiring
9	Study of the characteristics of PN diode, Zener Diode and Transistors
10	Study of Half wave rectifier with and without capacitor filter
11	Study of Full wave rectifier with and without capacitor filter
12	Measurement of strain using strain gauge

4.	Books Recommended
1	Charles K. Alexander, Matthew N. O. Sadiku, Fundamentals of Electrical Circuits, 7 th Edition,
	Tata Mc Graw Hill Publisher.
2	Kothari and Nagrath, Basic Electrical Engineering, Tata McGraw Hill Education, 2 nd Edition,
	2007.
3	D C Kulshreshtha, Basic Electrical Engineering, Tata McGraw Hill, 2010.
4	M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University
	Press, 2012.
5	ChinmoySaha, ArindhamHalder and DebaratiGanguly, Basic Electronics - Principles and
	Applications, Cambridge University Press, 2018.
6	Babu A K, Automotive Electrical and Electronics, Khanna Publisher.
7	William B Ribbens, Understanding Automotive Electronics, 6 th Edition, Elsevier Publisher.

Department of Humanities and Social Sciences

ENGLISH & PROFESSIONAL COMMUNICATION

B.Tech. I (DoME) Semester II	Scheme	L	т	Ρ	Credit
ENGLISH AND PROFESSIONAL COMMUNICATION		3	1	0	04
HS110					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	show enhanced reception towards the use of English language.
CO2	choose and employ appropriate words for professional communication.
CO3	develop sentences and text in English coherently and formally.
CO4	demonstrate overall improvement in oral communication.
CO5	analyze and infer from written and oral messages.

2.	Syllabus	
	Communication	(05 Hours)
	Introduction to Communication, Different forms of Communication, Communication and some remedies,Non-Verbal Communication – Types Communication in Intercultural Context.	Barriers to s, Non-Verbal
	Vocabulary and usage of words	(05 Hours)
	C ommon Errors, Synonyms, Antonyms, Homophones, and Homonyms Substitution; Misappropriations; Indianisms; Redundant Words.	; One Word
	Language through literature	(09 Hours)
	Selected short stories, essays, and poems to discuss nuances of English language	ge.
	Listening and Reading skills	(06 Hours)
	Types of listening, Modes of Listening-Active and Passive, Listening and note t practice, Practice and activities ReadingComprehension (unseen passage- literary /scientific / technical) Skim scanning, fact vs opinion, Comprehension practice	aking Iming and
	SpeakingSkills	(10 Hours)

Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Ir types, preparation and mock interview; Group Discussion- types, preparation a	iterviews- nd practice
Writing Skills	(10 Hours)
Prerequisites of effective writing, Memo-types, Letter Writing- types, Email eti Netiquette, Résumé-types, Report Writing and its types, Editing.	quette and
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hou	rs = 60 Hours)

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	REFERENCE BOOKS
1	Kumar, Sanjay and Pushp, Lata. Communication Skills, 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. <i>Technical Communication Principles and Practice</i> , 3 rd Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. <i>Basic Business Communication skills for Empowering the Internet generation.</i> Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today."

· · · · · · · · · · · · · · · · · · ·	
	Ninth Edition Pearson 2009
E	Mike Markel "Practical Strategies for Technical Communication" Rodford/St. Martin's
5	wike warker. Practical strategies for reclinical communication, bedford, st. Martin's
	Conserved Edition, 2010
	Second Edition, 2016
6	Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the
	Workplace "Pearson 2013